Calculates projected inventories and coverages and perform an analysis vs stocks targets

proj_inv(dataset, DFU, Period, Demand, Opening, Supply, Min.Cov, Max.Cov)

Arguments

dataset

a dataframe with the demand and supply features for an item per period

DFU

name of an item, a SKU, or a node like an item x location

Period

a period of time monthly or weekly buckets for example

Demand

the quantity of an item planned to be consumed in units for a given period

Opening

the opening inventories of an item in units at the beginning of the horizon

Supply

the quantity of an item planned to be supplied in units for a given period

Min.Cov

minimum stocks target of an item expressed in periods

Max.Cov

maximum stocks target of an item expressed in periods

Value

a dataframe with the calculated projected inventories and coverages and the related analysis

Examples

proj_inv(dataset = blueprint, DFU, Period, Demand, Opening, Supply, Min.Cov, Max.Cov)
#> Joining, by = c("DFU", "Period")
#> Joining, by = c("DFU", "Period")
#> # A tibble: 520 × 14
#> # Groups:   DFU [10]
#>    DFU         Period     Demand Opening Calcul…¹ Proje…² Supply Min.Cov Max.Cov
#>    <chr>       <date>      <dbl>   <dbl>    <dbl>   <dbl>  <dbl>   <dbl>   <dbl>
#>  1 Item 000001 2022-07-03    364    6570       17    6206      0       4       8
#>  2 Item 000001 2022-07-10    364       0       16    5842      0       4       8
#>  3 Item 000001 2022-07-17    364       0       15    5478      0       4       8
#>  4 Item 000001 2022-07-24    260       0       14    5218      0       4       8
#>  5 Item 000001 2022-07-31    736       0       13    4482      0       4       8
#>  6 Item 000001 2022-08-07    859       0       12    3623      0       4       8
#>  7 Item 000001 2022-08-14    859       0       11    2764      0       4       8
#>  8 Item 000001 2022-08-21    859       0       10    1905      0       4       8
#>  9 Item 000001 2022-08-28    273       0        9    1632      0       4       8
#> 10 Item 000001 2022-09-04    349       0        8    1283      0       4       8
#> # … with 510 more rows, 5 more variables: Safety.Stocks <dbl>,
#> #   Maximum.Stocks <dbl>, PI.Index <chr>, Ratio.PI.vs.min <dbl>,
#> #   Ratio.PI.vs.Max <dbl>, and abbreviated variable names
#> #   ¹​Calculated.Coverage.in.Periods, ²​Projected.Inventories.Qty